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Sedolisins (serinecarboxyl peptidases) belong to a recently

characterized family of proteolytic enzymes (MEROPS S53) that E32 1.
have a fold resembling that of subtilisin and a maximal activity at /‘( X
low pH.Z! This family includes the peptidase CLN2a human v

enzyme for which mutations in the encodi@fN2 gene lead to a

fatal neurodegenerative disease, classical late-infantile neuronal

ceroid lipofuscinosid.The defining features of the sedolisin family w129

are a unique catalytic triaf, Ser-Glu-Asp (Ser278-Glu78-Asp82

for kumamolisin-As; see Figure 1), as well as the presence of an Figure 1. The average active site structure of the kumamolisir-As

aspartic acid residue (Asp164 for kumamolisin-As) that replaces tﬁtrahed;]al dadduct complex. Tlhe h,ydro%e” bond ﬁiSta”)Ces d(i” A) betv(\j/ee_nh
TP . . the non- yarogen atoms are also given (In parent €ses) and compare Wit

Asn155 of subtlllsm,_ a residue that creates the oxyanion hole. The ; ° "« 05 X-ray structure (in square brackéts).

X-ray crystallographic and mutagenesis stutfielemonstrated that

the serine residue is the catalytic nucleophile, while the nearby Glu  (A) D82 (B) D82

AcIPF V' op \ D164

S .
is likely to act as the gener{il base to accept the proton frgm Ser ’-5_-_—’ 180 $278 T277 160, g378 T277
and assist in the nucleophilic attack. A fundamental question for Q 1.5
serine-carboxyl id is wh E32%. ® 32

yl peptidases is whether these enzymes use the 1940, © &) L9 1 o
catalytic mechanism similar to that of classical serine proteases with E787°0, ‘-?y}%f@ y fnES S e“;_\’"}\%-ﬂ
S|mple_ replacements of certain catalytic residues so that they could 120 AcIPF D}'PK Wiz ACIPF 0:’&
be active at low pH. Here we demonstrate from quantum mechan- D164 16

|an/m0!ecuIar meqhanlcal (QM/MM) molecula_r dyna_m|cs (MD) Figure 2. (A, B) Two average structures of the aldehyde complex.
simulations that this may not be the case. Unlike serine proteases

that use the oxyanierhole interactions to achieve the electrostatic
stabilization of the tetrahedral intermediate and adduct, the membersth
of the sedolisin family seem to stabilize the tetrahedral intermediate
and adduct primarily through a general aclthse mechanism (i.e.,
similar to the mechanism proposed for aspartic protéases

In this Communication, the QM(SCC-DFTB)/MM MD and free
energy simulationishave been performed on kumamolisin-As. We
examined the role of the active site residues in the stabilization of
a tetrahedral adduct (hemiacetal) by an inhibMesicetyl-isoleucyl-
prolyl-phenylanial (AcIPF) and elucidated the mechanistic similari-
ties and differences between serine proteases and a member of th X
sedolisin family. The average structFL)Jre of the active site for the Sp164 by using the MM treatment of the protonated Asp164, and

tetrahedral adduct complex obtained from the simulations is given this led _to _the breakdown of t_he hemiacetal cqmplex. Thu_s, the
in Figure 1. As is evident from Figure 1, the structure obtained results indicate that Asp164 is deprotonated in the hemiacetal

from the simulations is very close to the experimental structure. complex, and this suggestion is supported by free energy simulations

For the aldehyde complex, two average structures are shown in(See below). ) .
Figure 2A and B, respectively. Both structures were found to be _ 1he change of free energy (potential of mean force) as a function
well populated from the simulations, suggesting that their stabilities Of the reaction coordinat&X for the interconversion between the
do not differ significantly. As illustrated in Figure 2A, a low-barrier N€miacetal and aldehyde complexes is given in Figure 3A for the

hydrogen bond was formed in the substrate analogue complex. ThisWild-type enzyme and mutants Asp164Asn and Thr277Ala. Figure
3B shows the average structures for the wild-type enzyme at points

is in contrast to the case of serine proteases, where low-barrier ; )
hydrogen bonds were found in transition state analogue compfexes. & P, and c along the reaction coordinaig @Although both struc-

It has been a subject of debate as to whether the low-barrier lUres of Figure 2A and B were observed for the aldehyde complex,
hydrogen bonds in serine proteases might play an important role the nucleophilic attack actually starts from the structure with the
in transition state stabilizatiof. For kumamolisin-As, a large ~ Unprotonated Glu78 (i.e., through the one proton-transfer mecha-

stabilizing effect for the aldehyde complex was not observed as 4 nism). For serine proteases, the question as to whether the catalytic
result of the low-barrier hydrogen bond formation. triad uses one proton transfer or two proton-transfer mechanisms

has been a subject of debate The results on kumamolisin-As
t University of Tennessee. mdu_:a_tte that_ the _structures for the stab_le complexes may not be
# National Cancer Institute at Frederick. sufficient to identify the correct mechanism for the reaction.

Comparison of the structures in Figure 1 and Figure 2A,B shows
at the proton on @ of Glu78 (Q, of Ser278) transfers to of
Ser278 (QL of Glu78) as the hemiacetal (aldehyde) changes to
the aldehyde (hemiacetal), supporting the earlier suggéstibat
Glu78 plays a role similar to that of His57 in subtilisin. In the initial
model of the hemiacetal complex, the proton between &
Aspl64 and O of the hemiacetal was assumed to be gnTBis
proton moved to O after energy minimization and MD simulations;
the same proton transfer was also observed with a high level QM-
3LYP)/MM minimization. We have tried to fix this proton on

15662 = J. AM. CHEM. SOC. 2005, 127, 15662—15663 10.1021/ja0520565 CCC: $30.25 © 2005 American Chemical Society
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conformational changes/fluctuations may play a role in the

_ ":-_--..,- . @,.fm catalysis®®=d This could be the case for sedolisins, as well. For
£ 12 / /k %'1\ instance, comparison of the structures of kumamolisin and the
% ETS . ACPF DI6d Ser278Ala mutant of pro-kumamoliSimdicates that the breaking
= 8 I 278 of the salt bridge(s) of Aspl164 with nearby positively charged
_g_a ¢ aldehyde| P 5,1 Za, » residues (e.g., the P3-Arg residue of the prepeptide) in pro-
E n complex | e ’yk kumamolisin during secretion into acidic medium might trigger
] . ET8 " Adpr D164 conformational changes and generate the well-positioned general-
3 hemiacetal acid catalyst Asp164, leading to the self-activation.
0 complex i »\011
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